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Abstract

The aim of the present paper is to investigate the PZT phase diagram and to examine the phase transitions occurring in the low temperature
range near the morphotropic phase boundary by using measurement of elastic moduli. The phase transitions are also studied by XRD
measurements as a function of temperature. XRD patterns as a function of temperature let us to follow the evolution of lattice parameters and
so the determination of phase transitions. Phase transitions identified by Young's and shear modulus angr@uadiéd ldre in accordance
with those found by XRD studies and correspond, respectively to the Curie transition—between cubic paraelectric phase and tetragonal
ferroelectric phase—and to the morphotropic transition—between both ferroelectric tetragonal and rhombohedral phases or from tetragonal
to monoclinic phase. Finally a revisited version of PZT phase diagram is proposed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction controlling factors and wide applications of the PZT mate-
rials always incite continuous researches on these materials.
Lead titanate zirconate Pb@Zr Tix)O3 ceramics are In the PZT ceramics, optimal dielectric and piezoelectric

one of the most used industrial piezoelectric materials, usedproperties are obtained in a zone called morphotropic phase
as transducers, such as phonograph pickups, air transducerioundary (MPB$:® The width of this zone is not clearly
underwater sound and ultrasonic generators, delay lineestablished and several estimations of this zone are proposed
transducers, wave filters etcAll those applications need in literature’®
generally high piezoelectric constants and low dielectricand A well-known phase diagram of PZT is provided by Jaffe
mechanical losses in the ceramics. The variation of mechan-et all However, this phase diagram does not give the results
ical losses and elastic modulus as function of temperaturebelow 0°C. Recently Noheda et &% have reported a tetrag-
and excitation frequency can provide direct information on onal to monoclinic phase transition below room temperature
the energy dissipation and phase transitions in the material.for x = 0.50 and 0.52. Further investigations in the MPB done
Several authofs™* have shown that the mechanical losses in by Ragini et aft! show also the coexistence of monoclinic
the PZT are not only associated with domain walls motion phase with the tetragonal phase. In the present paper, we
but also with interaction of point defects with domain walls. study the phase transitions for undoped PZT ceramics with
The ratio Zr/Tiin Pb(Zr, Ti)Q, the nature and concentrations different compositions near the morphotropic phase bound-
of dopants, the shaping procedure of green bulk, the sinteringary by the measurements of elastic moduli and mechanical
temperature and atmosphere are the controlling factors tolosses from—180 to 500°C and also by XRD as a func-
obtain suitable properties for the application. Such variety of tion of temperature from room temperature to 800 We
will present the preparation procedure, the microstructure of
* Corresponding author. the materials, measurement of Young's moduldsand me-
E-mail addressgilbert.fantozzi@insa-lyon.fr (G. Fantozzi). chanical losse€Q~1, at kilohertz frequencies, measurement
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Fig. 1. Processing flow-chart.
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Fig. 2. Microstructure and average grain sigg¢ ¢f PZT 50/50 and PZT 52/48 materials observed by SEM.
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Fig. 3. Mechanical losse8~1(T) and Young’s modulus(T) for PZT 50/50 and PZT 52/48 materials frori80 to 500°C.
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Fig. 4. Mechanical losse®~1(T) and shear modulus(T) for PZT 50/50 and PZT 52/48 materials froai80 to 500°C.
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Fig. 5. XRD spectra for PZT 50/50 and PZT 54/46 sintered samples.
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Fig. 6. XRD profiles evolution at different temperatures for PZT 50/50.
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of shear modulus3, and mechanical losse3; 1, in the hertz 418 PZT 50/50 ceramic
frequency range, XRD patterns as a function of temperature N /NS
and finally an enlarged phase diagram of the PZT ceramics 416 - e —O-a
from —180 to 500°C. < ‘ﬁ\.\ﬁ
% 414 | \'“\A\
8 N
2. Materials and experimental details % 4121 \A
. . § Tetragonal phase ZZAQ}QUEC phase
The materials used are undoped PZT ceramics prepared S 4,10 7 Oo—0
by solid state reaction method with the following Zr/Ti ratio: § - o&
Pb(Zio5Tips)03, Pb(Zih52Tio.8)03, Pb(Zib.54Tio.46)03, 3 408 _ O,,._..o»""o'
Pb(Zn 56Tig.44)O3, hereafter shortly labelled as PZT 50/50, - o0
PZT 52/48, PZT 54/46 and PZT 56/44. 4,06 f- 00
The procedure of preparation of PZT ceramics is shown O
by a flow-chart inFig. 1 The starting powders of PbO, ZsO Temperature (‘C)

and TiQ were mixed in a planetary grinding mill for 3h in
an agate container with agate balls as grinding media andFig. 7. Lattice parameters variations as function of temperature in PZT
ethanol as a lubricant. After mixing, the powder was dried 50/50.

overnight at 100C in an oven and crushed to pass through \hereAfis the resonance curve width at half-height &rid

were calcined in air at 900 for 2h with a heating and a  fgm:15

cooling rate of ¥C/min. The calcined mixture was crushed 4o

with the planetary grinding mill for 6 h with ethanol, and then . _ 0.94640L" fy

dried overnight at 100C in an oven and sifted through 200, d?

100 and 5Qum screen to eliminate agglomerates. Calcined \yherep is the density of samplé; is the length andl is the

powder was isostatically pressed at 400 MPa in a plastic bag.thjckness.

The green body was sintered at 128Dfor 4 h with heating The Q~(T) and E(T) were measured in vacuum, with a

and cooling rate of 5C/min. In order to avoid evaporation of  heating rate of 1C/min, at a frequency of about 3 kHz, with

PbO and to have equilibrium of stoechiometry of the ceramic 3 maximum strain amplitude of about 10

aftersir}t;ring, the ceramic was covered with Pbzjp@cking The mechanical losse® 1, and associated shear modu-

powder: lus,G, versus temperature were measured in the Hz frequency
Density of the sintered materials was determined by the range, respectively, at 1, 0.3, 0.1 Hz by using a torsion in-

water displacement method. The sintered samples were eXyerted pendulum, under vacuum, betweet80 and 500C,

amined using a scanning electron microscope (SEM) obser-5t 5 heating rate of AC/min.

vation to a}nalyse the micros.tructurel, i.e. shape and size of The samples for both medium and low frequencies exper-

pores, grains, and ferroelectric domains. These samples wergments were rectangular bars with dimensions of 40 mm

mechanically polished by SiC paper and then lapped by dia- 5 ym x 1 mm.

mond paste of 30, 6, 3,im. Before observation, the samples  |n order to identify the present crystalline phases in

were chemically etched by HF solution 5vol.% in distilled gjntered materials and to follow the evolution of crys-

water during 30 s. The average grain sizes were estimated bytajline structure as a function of temperature, X-ray diffrac-

the line intersection metho_dl. tion (XRD) was performed on Rigaku diffractometer with
The mechanical lossQ™", and Young’s modulusM,  graphite monochromatoOP 02] by using Cu kx; radia-

as a function of temperature have been measured at kilo-tjgn. The voltage of X-ray tube was 40kV, and the current

hertz frequencies? The sample was supported horizon- \as 25 mA. The compositions of the PZT phases were iden-

tally at its nodal points by two pairs of fine nickel wires. ijfied by an analysis of the linedip0] and h0 1] groups,

The sample was driven electrostatically in transversal flexu- \which are split into two peaks in the tetragonal structiie (

ral Vibl’ation by the app|icati0n Of an amp|lfled SinUSOida| and one peak in the rhrombohedral StI‘UCth)E '(rhat gives

tension accompanied by a continual tension. The single gitogether three peaks containing both structures.
excitation-detection electrode was coupled to a conventional

frequency modulation (FM) detection system. At each tem- Tablel
. . . Phase transitions temperatures
perature, the resonance curve of the vibration amplitude

was recorded, and the internal frictio@ (1) was calculated =~ Compositions Tie=n M) (°C) Ta—r) (M2) (°C)
from:14 PZT 50/50 3892 ~139+3

PZT 52/48 375:2 —69+3
01— Af PZT 54/46 3712 162+3

- \/é fi PZT 56/44 3692 309+ 3
Jr
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The relative densities of the different PZT ceramics were the PZT 50/50 and PZT 52/48 ceramics. Young’'s modulus,
M(T), shows two anomalies Mand M, for all the three com-

Fig. 2illustrates the microstructures of two PZT ceramics positions. The first anomaly Mcorresponds to a very sharp
(PZT 50/50, PZT 52/48). The average grain sizes are esti-peak R on the mechanical losses curves. However, there is
no peak on the mechanical losses curves corresponding to the
second anomaly W The temperatures of these anomalies are
dependent on the composition of materials.

Fig. 4 shows the variations of mechanical loss@s,

and shear modulu&;, as a function of temperature for the
PZT 50/50 and PZT 52/48 ceramics. Shear moduB(3),
shows also two anomalies iMand My for both composi-
tions. From the anomalies temperatures and according to the

about 93-94%.

mated tobe 9, 7, 5,dm for the PZT 50/50, PZT 52/48, PZT

54/46, and PZT 56/44, respectively.

3. Young's modulusM, shear modulusG and
mechanical losse€~! at kilohertz and hertz
frequency range

Fig. 3 shows the variations of mechanical loss@s;?,

and Young’s modulusi, as a function of temperature for
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Fig. 8. XRD profiles evolution at different temperatures for PZT 54/46.
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chanical losses Ppeak is attributed to the transition be- and adjusted with a plateau attributed to the contribution of
tween cubic and tetragonH.However the M could be at- ferroelectric domain walls in diffractiof? Thus the required
tributed to the transition from tetragonal to rhombohetfral  informations such as the number of lines, their angular po-
or to the transition between tetragonal and monoclinic sitions and their relative intensities are obtained. The lattice
phases. parametersr andcr of tetragonal structure were calculated

The monoclinic structure can be considered as a bridge from the doublet (2 0 0).
between the rhombohedral and tetragonal phasesinthe region Fig. 6Gillustrates the evolution of XRD profiles from 42.5
of the MPB?1 The phase transitions temperatures obtained to 46.0° of 20 for PZT 50/50 ceramic at different temper-
from the My and M temperatures are given Table 1 atures: 22, 200, 350 and 388. The XRD profiles below

389°C can be identified as tetragonal ferroelectric phase; the
XRD profiles above 389C can be identified as cubic para-
4. XRD phase studies electric phase.
Fig. 7 shows the variations of lattice parametej@0 1]

Fig. 5shows the XRD patterns of the sintered samples for anda[1 0 0] in the tetragonal phase aafl 0 0] in the cubic
PZT 50/50 and PZT 54/46 compositions. X-ray scans were phase as a function of temperature. The phase transition from
carried out at room temperature with a step of 0.86d a tetragonal to cubic phas&d) is located near 38C.
scanning speed of&nin from 2 equal 20—70°. The com- However, for the PZT 54/46 ceramics, the XRD profile at
position PZT 50/50 showed one set of peaks correspondingroom temperature is complekify. 8), and cannot be uniquely
to tetragonal ferroelectric phase as expected from the phaseidentified as a tetragonal phase. Such multiplicity of the pro-
equilibrium diagram. The diffraction lines which were split files of XRD could be interpreted as a mixture of tetragonal
into triplets for the composition PZT 54/46, indicated the co- phase and rhombohedral phase. By using Lorentz function,
existence of both tetragonal and rhombohedral ferroelectric a decomposition of the diffraction profile lines is performed.
phaseg./1° When the temperature is above 2@ the XRD profiles be-

To follow the evolution of crystalline structure of sintered come simple and can be easily identified as tetragonal phase.
samples as a function of temperature and estimate the latticeVhen the temperature reaches 3] the crystalline struc-
parameters, we have analysed the peaks [(§,0(2)0 0k, ture becomes cubic. The results of the lattice parameters are
(200)] in the 2 range 42.5-46> because their intensity is  shown inFig. 9. The Curie temperatur@¢) corresponding to
enough large to perform good measurements. In order to en-phase transition from tetragonal to cubic is located at’®7.1
sure an accurate determination of lattice parameters of unitsHowever, the phase transition from rhombohedral to tetrago-
cells, the X-ray scans were recorded with a step of 0.602 nal cannot be easily determined by the variation of the lattice
scanning speed of 0.02Bnin. The data obtained were fitted parameters because uncertainty of the decomposition of the
with the sum of several Lorenzian lines using a computer XRD profiles lines.
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Fig. 9. Lattice parameters variations as function of temperature in PZT 54/46.
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Phase transitions temperatures obtained from XRD mea-oclinic phas€. ! These two transitions are also confirmed
surements are in accordance with those determined by meapy the evolution of XRD patterns as a function of temper-

surements of elastic moduli shownTable 1

5. Phase diagram of PZT ceramics

ature. Thus, an enlarged phase diagram of PZT ceramics is
obtained especially in the low temperature range from the re-
port of our results and those of Noheda et-#l.and Ragini

et alll on the Jaffe et al.phase diagram. Finally, It is useful

to emphasize that the measurement of elastic moduli pro-

A good accordance is found when reporting our phase vides a suitable method to determine the phase transitions in
transitions temperatures results obtained from the measureceramics.

ment of elastic moduli on the Jaffe et’adliagram, as shown
by Fig. 10for the high temperature part of the diagram. Mea-
surements at low temperatures are also showagnlQ The
recent results obtained by Noheda e?#l.and Ragini et
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